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SECOND-VARTIATIONAL CALCULUS OF VARIATIONS METHOD

Bobby R. Uzzell and Scott S. McKay

1. INTRODUCTION

This paper presents the mathematical methods used in the develop-
ment of the second~variational calculus or variations optimization pro-
grams. An outline of the derivation of these methods for a constant
thrust, single stage problem is presented in reference 2. Before the
work presented in this paper was performed, the method had been applied
only to a single stage, two-dimensional, constant thrust program. This
paper presents a fairly detailed discussion of the methods and demon-
strates the formulation of the necessary equations for the solution of
a8 three-dimensional insertion into a circular orbit for a rocket engine

with varisble thrust capability. No results and no program discussions
are presented.

It must be emphasized that the work presented in this paper would
not have been possible, or at best would have required a considerably
longer time for development without the assistance of Dr. H. J. Kelley
of Analytical Mechanics Associlates, Inc.



2. STATEMENT OF MAYFR PROBLEM

Consider a particle whose movement in space can be expressed by a
system of first-order differential equations

5((] =gj(t’ Xl) R xn) A I ym); J=1, .. ., mn (1)

where

5 T 3

Time, t, represents the independent variable and the functions Xi(t)

and yk(t) are dependent variables. The equations (1) are referred to
as the state equations in that they determine the values of the state
variables X, The system (1) essentially represents a set of constraints
that must be met by the state variables as the particle moves in space.

The set y, 1is termed as the control variable vector yv(t) since values

can be prescribed as functions of time to control the behavior of the
system. For meaningrul problems it is required that the system, de-
scribed by equations (1), move from a prescribed initial state and time
to a prescribed terminal time and state. The initial and final states
will be in general only partially prescribed. In general, it is required
that the solution of state equations (1), with some control y(t), sat-
isTy end conditions

q;r[‘zo, b xl(to), C e, xn(to), xl(tf), Ce xn<tf>] =0
r<2on+2 (2)

The problem would be overdetermined if r = 2n + 2. It is desired that
a y(t) is found such that the system detined above will behave in such
a manner as to provide a minimum value of a scalar function

PE‘,O, te xl(to), C e xn(to), xl(tf), C ey Xn(tf):l (3)

The problem posed thus far - namely, that of finding a y(t) which
minimizes a function of the terminal values of the state variables of a
system described by differential equations subject to prescribed end
conditions - is known as the general problem of Mayer with mixed end
conditions.




Since the control can be prescribed it is necessary to define the
admissible space of control variasbles. The domain of definition is t.
Let Uk be the range of the control variables Yy U denotes the

range of y(t). Given a point,

y=(y1: y2) S ym)

which is an element of U, is equivalent to giving a numerical system
of parameters yy» y2, e ey yﬁ. In applications some Y, may be de-

fined on a closed set. For the discussion in this paper the control
variables will be piecewise continuous, that is, control y = y(t) is
continuous for all t under consideration, with the exception of only
a finite number of t, at which y(t) may have discontinuities of the
first kind. For discontinuities of the first kind the following limits
exist at a point of discontinuity at t = g:

- +
¥ (g = 0) = lim y, (¢)7, n (g +0) = lim y ()",
t—E t—€
t<eE t>E
where

may not be equal to
¥ (g + 0)

The value of a piecewise continuous control y(t) is assumed to
have the following values at the point of discontinuity:

¥ (€) = v, (g - 0)

The vector y(t) is assumed to be continuous at the two extreme end-
points. From this definition it follows that every y(t) 1is bounded
even if U is not.

Thus, any plecewise continuous function y(t), to <t < tf, whose

range is in U, whose values are assigned the left-hand value at a
point of discontinuity, and which is continuous at the endpoints of the
interval to <t < tf on which it is given, i1s an admissible control.



From the definition of an admissible control it follows that the
state variables are continuous, but the time derivative of the state
variables may be discontinuous when y(t) is discontinuous.

3. EULER AND TRANSVERSALITY CONDITIONS FOR AN EXTREMUM

The following discussion of the necessary conditions for a minimum
is not intended to be rigorous but is meant only to supply a general
approach to the development of these conditions. Presenting a rigorous
discussion would invelve a formidable amount of work. This discussion
is based on general knowledge like knowing that the first derivative of
an algebraic function must be zero at the point the function has a rel-
ative minimum. ‘

Consider the Mayer problem as defined in the previous section, only
restrict the problem further by fixing all the initial conditions in-
cluding time. Also assume that a set Yy has been determined that
minimizes P(le’ Ce ey X, tf) where X . = xi<tf)' Since the in-
itial values or the state variables are fixed, P is a function of only
the final values. Since the set (1) actually represents constraints,
the multiplier rule can be employed so that P can be adjoined with
differential constraints to obtain

i ™MB

Ay (- ki + gi> dt (&)

1

t.
T
J =P(X1f’ C s Xpes tf) + [ .

@)

where Ai represents a system of lagrange multipliers which vary as -

functions of time.
If an expansion is made about (4),

L
5 J2 + . e

J JO + Ji +

where JO corresponds to the nominal path, Jl the first order effect
of control variations and 1nitial variations in state, and Jé the

second order effects. Since JO was defined to be a minimum, Jl must

be equal to zero and it is desired to determine what properties must be

satisfied for Ji to be zero.




Considering only the

3 =

The last term in the expression is due to t

+

B3P +

i

first order effect of variations,

~
"
nMB

. xi(-Ski + Bgi>dt

(5)

nmMB

N Aip(“Hyp + 815)0%p

P being free and subject to

variation Stf. The terms B8P and Sgi are given by the following two

expressions, respectively

dP = P dt, + g ?E— dx, ., + x,, Ot
S, Cf i=l§xif< gp ¥ *ip Oty)
n agi m Bgi
For shorthand notation let
O, =0x,, + X,, 0t

if if if °°f

The Hamiltonian, H, is defined as

Jl can now be written

t

{

@
Ji =% 5tf +
f
T
1

=+
1]
M8
>
1]

i

in the following form:

nmMs

MB

1

P

Ax
&if if

no ogy m Oy

8%, + I dx, + I By, |dt

1 J=1Fx3 3 o1 %y Tk

; 6
i X3 Db (6)



Rewrite the integral in (6) in the following form:

t t

r £

f n n n Bgi m Bgi
- T A, O, dt+f AL by Bx, + X By,

ox , ) k/dt

L i=1 7 7 Y i=1 1<j=li Jok =1 Yk

O o]
Ietting

u1=>\i

and
dv, = &x, dt
i i

and integrating the first integral by parts, the expression is changed to

n £ £ n
- )\SX]+/ I 3. ox. dt
. 1 1 . 1 1
i=1 t X i=1
o]
(@]
t
f n n Bgi m Bgi
+ T A oo bx, v I 8y, | dt
[i=ll<J=lXj 3 k21 k>
o]

Substituting the above expression into (6),

P o 1
Tom S %t T sk Mae - F ) Mae Par
f i=1 if i=1
b
n n og, n m Bgi
+f Z}\+ngl)\ ., + I A Zysydt
J oli=2\1 y=1% 9 11 tr=1%% 8
o}
n
tH Ot - Ty Xyp O



Rearranging terms in the above expressions, the following result is
obtained:

oP > n
J =< + H_| &5t 0P .
1 V3. T e Pt 55— " Mf) ax
£ i=l<xif if
£ og og

nh™MB

|_.l
TN
e
e
+
n™MB
%L
de o
La.>‘
\_/
o
»
(=N
+
’_l
h™Ms
>
'_l
[ =]
|_.|

5—; Oy, { dt
i 1 Vg Ok

t

+ f
t

o

For Ji to be equal to zero the following four expressions must be

equal to zero

Hf+%¢§—£>5tf (7)
oP
-2 Nx, (tL), i=1, .. .,n (8)
() o (22)
n g
T AP i=1,...,n (9)
<i J=1$i*‘>
n agi _
151“%1? k=1, .. .,m (10)

From equation (7), if final time is not fixed - that is, Stf =0 -

the transversallity condition, or natural boundary condition, for open
final time is determined and is equal to

oP

Hf + 5?; =0 (11)

From equation (8), if the final Xy is not fixed then the condition
oP

55(__ - )‘if =0 (12)

if



8

must be satisried. This condition is the transversality condition for
rree X;p and is particularly important since it assigns a value to
Mt

Since

o
1]
nm~MBs

cquations (9) can be written as

<ii + %§%>, i=1, .. ., n

1

This result yields the conditions that
: OH .
A F 5;;, i=1, .. .,n (13)

must be equal to zero.

Since
OH no ogy
= Z )\
55& 1= W
condition (10) can be written as
OH
S -0 k=1, .. .,m (14)
k .

Conditions (13) and (14) are known as the Euler conditions and must
be satisfied at every point of the trajectory. Conditioms (11), (12),

(13), and (14) represent necessary conditions that must be satisfied
for an extremum of P.

L. WEIERSTRASS NECESSARY CONDITION FOR A MINIMUM

The control variables Yy along an optimal trajectory satisfy the

Weierstrass condition



H(yl*, v e ym*) > H (yl, C ey ym)

where the yk* are arbitrary. This statement simply means that the
vector y minimizes H. The set Yy is often determined from the

operation

Min. H.
y(t)

If inequality constraints on the yk of the form ykl < Yy are

= Yxo
required, the minimum operation is performed subject to the constraints.
This restricted condition is known as the Pontryagin principle. 1In
rocket applications if thrust, T, is a variable, 1t is considered as a
control variagble and is permitted to vary between the limits

0 < Tl <T<x T2

Since thrust will appear linearly in the system (1), H can be written
in the following form:

H=TTf +a
According to the Pontrysgin principle, when f 1is negative thrust
should be set to T2 and when f 1s positive thrust should be set
to Tl' When f 1s equal to zero, or g% = 0, the thrust level is
changed. The function f 1s defined as the swiltching function. Since

%% is equal to zero at a switching point, H will remain constant and
continuous.

A difficulty occurs if f 1s zero over a set of measure greater
than zero since any thrust level would minimize H. This occurence
1s not expected for the present problems being studied.

5. EXPRESSION FOR CHANGES IN FINAL STATE VALUES
AND DEFINITION OF THE PENALTY FUNCTION

a. As discussed in Statement of Mayer Problem, the system of dif-
ferential equations to be satisfled along the flight path is given in
first-order form by system (1). It i1s now assumed that a solution of
set (1) is aveilable and that this solution satisfies the specified
initial conditions. It is also assumed in this discussion that



8xi to) = 0, for all i; that is, that all initial conditions are spec-
ified. Iet this solution be denoted by ii = ii(t), Yy = &k(t) and

examine the behavior in the neighborhood of this solution by setting

x; = ii + 8x, i=1,...,n
YV = Ve * W k=1, . . ., m
and linearizing:
. n og m o Og, . -
8k, = j E ) 5;3 z3x(j + ) E . 5;; 5%,» i=1,...,n (15)

The partial deriviatives of g, are evaluated along the reference
trajectory and are known functions of time. The functions 6xi and

Syk are the variations of Xy and yk, respectively.

b. By definition, the following set of first-order differential
equations is obtained from the homogeneous system of (15) by transposing
the matrix of coefficients and changing the sign

. n Bgi
)\tj:-iflxig;‘;’ =13 .. ., n (16)

This system is the adjoint system to (15). The solution of the two
systems

)\j) j =l) b n
6Xj, g=1, . . ., n
are related by
4 n m n og .
— £ A.Ox,= Z DI By.
t
a5 .1 k=13=1 9 % K
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This result may be verified by evaluating the derivatives to obtain

dx, +

hMB
>
(¢4
~
L}
[ e I
>
N Ms

T Ay Bk, (17)

Substituting (15) and (16) into this expression

1

a n n n og
= I ),%, == Z Z Bx
®y=19 9 y-1p-2 Pgﬁ !
n n o
+ oz Y Fx'i 8x
j=1p=1 99 P
n m og
+ 3 I 8y (18)
j=1k=1 1Y &i k
Integrating (18) between definite 1limits t, and t,,
n n
§ Ay (tf) tsxJ (tf) - ;_: g (to) SxJ (to)
J=1 j=1
t
ff r;: r; ?1 Sy, dt (19)
= A ¥
Y y=1x=1 3% K
(o]
where
n n " n n o
z Z &B SXJ = I z )\J in Bx
J=1p=1 P % j=1lp-=1 p P

Consider the special solution corresponding to
t.\ =
b (te)

A (tf) = 0, J=1

]
[
-
e
n
[N
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and assign the symbols xj(i)(t). The value xj(i)(t) can be obtained
by integrating (1) and (16) backward in time from t.. Obtaining this
result for all xj, n expressions are obtained-for the Sxi(tf> values
and from (19)

sx. (t.) = T () gy s, (t
Xi(f)*j=lxj () &5 (%)
"
f 3
+f I;j IZI )\j(l) © Byk dt, i=1, s n
4 K=1j=1 X

Since ij (to) is defined to be equal to zero, the following expression
is obtained for the change in 8xi (tf) from the nominal as a result

of changes in the control variables:

P ™Mms
>
P
'_J
g

o
»
T
ISk
)
e’
T
i
nm8s

1]
(20)

The problem posed this far - that is,ininimizing P as given by
equation (3) subject to r constraints as given by equation (2) -

can be apprcached in another manner. Replace the previous problem with
the problem of minimizing

(21)

L2+ ]

0

lav)

+
=
[ g B

=
<=
[

The kj are positive real numbers and are weighting factors on the
squares of the errors between the ¢j. This function is defined as the
penalty function in that the constraints ¢j will penalize P’ when
the last member of (21) is large.
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6. SECOND VARTATION DEVELOPMENT

.

For this discussion let all initisl values of the state variables
and time be specified. The terminal time will be considered as free
and let the terminal state values be subject to r constraints

wj[%i (tf), C e ey X (tfﬂ , j=1, ..., r

Using the penalty functions, as defined in the preceding section, the
end conditions at final time are considered free and the function to be
minimized is

)
]
)

+
-
[N
-~

-

where P 1is defined by equation 3.

Consider a trajectory in space whose initial conditions satisfy
the required values, and whose state variables are determined as func-
tions of time by the set (1). The vector y(t) is not optimal and is
chosen as a set which will direct the trajectory in the desired direc-
tion. The trajectory is terminated at a relative minimum of P'; that
is, when

@’ _
dt,
AN 1""

the sign of ae_ is negative, and the sign of ap_ is positive
dtf dtf

The basis of choice of this germinal condition is twofold. First, since
it is desired to minimize P , the trajectory will be terminated at a
minimum of this function. The second reason will become apparent from
the following discussion. The total derivative ot P’ with respect to
time is given by the following expression:

7 ’ n 7 dx .
ap’  op <6P ) J
ar - + T
at, 3t ;2 ijf at,

o’ n (BP' )
= + P g,
e "y 2y \Oge) S



1k

From the transversality condition (12),

o>k \
> T Mir
if

Substituting this condition into the above equation,

dPl BP, n
=<+ I .. 8,
dtf Btf =1 Jf =3f
5P’
= étf + Hf
Since in rocket applications
a’ _
dtf

it is seen from equation (11) that this condition also satisfies the
transversality condition for final time.

It is clear that this trajectory not only does not meet the re-
quired final conditions, but is not optimal since not all of the con-
ditions for a minimum are satisfied. In fact, the trajectory satisfies
only system (1) and condition (11). It is desired to use this reference
trajectory and calculate B8y(t) to obtain a new trajectory in the
neighborhood of the reference trajectory for which a reduction in P
is realized.

If an expansion is madg of P’ along the reference trajectory, an
estimate of the value ot P  for the new trajectory can be obtained
and is equal to

Here, PO' is equal to the penalty function for the reference trajectory,
[

P is the penalty function for the new trajectory, Pl' is the collection
of first-order terms in the variation of the state and control variables,
and P2' 1s the collection of second-order terms in the variations of the
state and control variables. Higher order terms will be neglected for

this discussion.
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An expansion of p’ in the neighborhood of the terminal point of
the reference trajectory is given by

4 4 - -
P'=P (xif’ s X Ef>

n
op’ )
ST Myt oSEo Btp
i=1 if f
n n 2 7
+% z z Bxa Px DMip DMXp
1=13=1%%r ¢
n 2 _1 2 1
o~ P 1P 2
+ 5 M. Bt + = 8t (22)
§ 2 Oxyp O TE TUE T 25 20

f

where ii denotes values on the reference trajectory.

It is desired to obtain an approximation to (22) valid to second-
order in control variations Syk(t), and estimates of the terminal incre-
ments Axif, which are correct to second-order terms, are required. A
first-order estimate of the variations is given by (15). Integration of
this system to final time would yield a first-order estimate of Bxif.

An equivalent estimate is given by (20). Since a second-order estimate
is desired,

2
n og, m g, n n g
Bk, = I o ox_ + T ylayk+% = o Bx,, Bx
p=1% P x=1% p=1g=1"p g
n m B?gi m m 52gi
+ z z x 8y, += X z By, oSy
p=lk=l&p5§k PR T2y g g2y M g ks



16

Substituting this result into (17), the following expression is obtained:

n n n og .
d
S 3 ), 0%, = =T % x.&lax
at T, ) g1 p =1 9T P
N P N
+ = . Yy -
k :
j=1k=1 9% p=1j=17°
2
, ° n n g,
+= z z )\,g——%—&c &x
23=1p=1g-1 7T % P
n n m ng. .
+ z z 2 A . Er-*%;- Bx yk
j=1p=1k=1 9 Fp Vg P
, B m m 52g,
+ =z by Z . By, Oy
k
Ej=lk=ls=l‘]aykays s

Integrating this expression between limits to and tf and setting
=0 ¢ ing that
SXi(to) 0 and noting tha

WnmMms
nmMmB
>
&’LO’
[11°)
o] .
o
i
1]
HWm™Mms
nMms
>
o
m
o
B

T

lp
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the following expression is obtained:

t
n £ n m og
R (tf) x, (tf)-—-f s 5 )\jyy‘iESykdt
J=1 : J=1lk=1 k
o]
t
1 L n n Beg
+'2-f z z Z lj ﬁ&x dx _dt
{ J=1p=1g-=1 p g P 8
o _
t
f n n m 52%
+f z z DI - &x_ dy, dt
A j=lp=lk=l‘]axpayk p Tk
o
t
1 £ n m m Beg,
+-f z z S )., <—— By &y dt (23)
2 yoi1k=1s=1 9 W W ks
o

Again, as in section M, use the special boundary condition

Aj (tf) =1, =1

Ay (tf) =0, 3

and using the sumbols xj(l)(t). The function

]
e

- oz, (24)

is defined in terms of the solution xj(l) of the adjoint system (16).

With these definitions and the system (23), a second order estimate of
the increments Sxi is given by the integral

t —f I; aia + dat (25)
81 (%) = Lo O T

k
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where

o
M s
~~
=

+
o
M
h™Ms
M e

(1) e,
. 5———%—— 9x &
1 " X My P "k

ayk dy. Yk Vg 2

S

+
Mo
T =
™M

>

1 J

Expression (25) is a second order estimate of Sxi(tf). If final
time is variable an estimate of Axi(tf> is given by

nooog,
nx,,, =
i = %i(%e) TEip Bbp t I e Bxy, ot
Jg=1 Jf
m Og, n og
if 1 1f 2
+ X 3 8y, . 8t, + = = 5t
kf €.
k=1 Oxjf f 2 J. =1 axif Jf f
L1 B 21 % (27)
2, 24 W, ke Tr 2 St
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Substituting equations (27) into (22) the following second-order approx-
imation to P' 1is obtained:

n 7
15 -p'(x A2 I
Tt 50 T (R o T ) Lo x| Far
n og m Og
if if
+| 8., + 2 —= 8x + 5 -—5y>5tf
(lf g2 %ge I 2y O T
R - agifg . 3 agify +agif>8t2+8P' st
2J.=15xf 3f k=15ykf kf Stf £ ot iy
n n 2 7
1 o~ P
+ = I by dX. . + g, Ot 5%, + g &t
R 0 £ o f £ °or
23=193=1%r Jf( roH ) ( J )
n P i 2 ¢
O P 1 0°P 2
+ z 8%, + €., Ot,) Bt, + = —— 5t (28)
i =1 5xif 5£f ( if if f) £ 2 ath f

The problem is to find 8y, values that will minimize the expression (28).

The Hamiltonian H as defined in section 3 is related to the Hi
terms by the following expression:

n 7

OP
H= I 50— B
i =1 P4 1

where H, is defined by (2k4).
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let ¢ be defined by the following expression:

_ rzl ok
0 =
{2 Kyp 1
where @, is defined by (26).
Therefore,
n n 2
w=';" z b 5}‘(-9HX ox. &x.
i=135=1%% % + J
n m BQH
+ by dx, OBy
f21k=1 % W 1Kk
m m 2
1 O H
+= I z By, By
2 1521 M W ks

The expression (28) which is to be minimized contains the expression

tf
n I m
OP ~/’ OH
L 5o Bip = z By, + o|dt (29)
121 % I gDy Ty K
o
where ‘tf is fixed.
Equation (28) is of the general form
tf
y = G(tf, xif) +f I(t, X, ) ici)dt (30)
to

which corresponds to the problem of Bolza. The problem of Bolza is
defined in the same manner as the problem of Mayer, except the func-

tion (3) to be minimized is exchanged for expression (30). This problem
is a separate problem within the big problem. The differential constraits
for this problem are given by (15). It is desired to adjoin these



21
differential constraints with new multipliers 8)\i, i=1, . n,‘

and write the FEuler-lagrange equations, the Welerstrass necessary con-
dition, and the transversality conditions for the problem of Bolza.
The general Hamiltonian expression for the problem of Bolza is given
by

n
h=I+ £ (ith lagrange multiplier) (ith variational equation).

For this particular problemn,

n n agi m agi
h = Z  O\. 2 5_8X+ hN 5———8y
i=1 1<j=1 Xy d k=1 W K
m
OH
+ 2 oy, +
k=1 Y ok
The Welerstrass necessary condition takes the form
#
h(Sy*l, C e Sym>z h(ayl, Ce aym)
in which the B8y, %, k =1, . . ., m, are arbitrary. This expression
n
simply states that the 8, kX =1, . . ., m, required to minimize (28)
will yield a smaller or equal value of h than any other
By*k, k=1, . . ., m

Corresponding to equation (13) , the Euler-Iagrange conditions
are given by

Sj‘i:-gﬁT’ i=1, .. .,n (32)
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Taking the indicated partials,

- P o ol
By =-  Z ij ox, ~ Odx,
J=1 i i
n og n Py
) IoB, T - I oses O
ST y=1 J Bxi 3=1% % Y (33)
m 2
o H
- by dy. i=1, . . ., n
k=1 g W K ’ ’

If equation (13) is linearized, the following expression is obtained:

2 m 2
. . Rl 2 O°H O°H
Ay, FON, = - = z dx. - z dy.
o g Ty o X Oxy 3T D Sy Oy K
n 2
-5 xa Hx 5. i=1,...,n
3=1% %y
Since
_ 3H
AT T .
i
and
>’ ) gﬁi
X. xj X,
the above equation reduces to
n Og. n 32
. H
oy = P om Myt T
J=1 1 J=1 i J

(34)
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Comparing (33) and (34) it is seen that the linearized version of (13)
is equal to the Euler equation for the Bolza problem. This, the Sxi
multipliers are only linearized versions of the ki multipliers for

the Mayer problem and the Sii equations can be obtained by calculating
the linearized version of }

5
The transversality conditions corresponding to open ijf are
given by
1
) + + =
& - (Jo Jl 2 Jé) j=1 n
Jf ‘BSXJf ’ > ’

Taking the appropriate derivative of (28) the following results are
obtained:

n + O n 2.1
' Bir P
rh.n = Z ot + Z 5x, . + g.. Ot
b2 S Sxif axjf £, 8Xif ngf ( f if f)
n
+ BCP' 5t. = 0 =1, . n (55)
&Ejf Stf f 2 > ° *)

If a linearized version of (12) is calculated, the following result is
obtained:

Xjf + quf = xjf + axjf + Xj Btf
’ n 2 1
=%+ z 'a—a—%—axlf
JP i =1 Fyr “ir
2 ¢ n 2 7
3P _o%p’
+ 5t + = g. . ot
d " SEf £ 2 ijf axlf if f
Since
— aPI
Mip T
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and

n .
. - 5 if
Air R £
i= J
_ 2 3’ %Bip
T 5"—5—
i= Xif
the following expression is obtained:
n 2.7 2 1
o°P 3P
3% z ¥X., + €., Ot + ot
f =1 ijf 5xif ( if if f) if tf f
n ¢+ Og.
i =1 Tif Tf

Comparing equation (35) and (36) it is seen that these two expressions
are equal. Therefore, the transversality conditions for free ijf
for the Bolza problem is a linearized version of the transversality
condition for free xjf for the Mayer problem.

Since tf is fixed in the Bolza problem, no transversality
condition is needed for final time. However, the parameter Stf must

be chosen which minimizes (28). This condition will be satistied if

Stf is chosen such that

2 2

8<JO+J1+-1—J)_O
St =

The above expression is equal to the following expression:

n n n o

dp’ dp’ dp’ Cir

Z g.n + + Z by dx
1o Xgp Af T Ot Z1 ®ip |\y o e T

m Og, n Bg m og.
+ 3 rlf | +| Z r— 8.0 5 if iep
x =1 Yk 3 =1 J k=155kf
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if> n n BEPI
+ ot + z z g 3., + 8,. Bt
Stf P70y gy Xog if( g 7 Bir f‘)
n 2 1 2.1
o°p O°P
+ 3 8%, + 2g, , 8t.) + —5 dt, = O (37)
1 =1 Fyp Ot (e * 2810 %) . T

A linearized version of the transversality condition (11), where

n ?
oP
H.= I )
Ty oq e 31
for the Mayer problem is as follows:
o dp! op’ D oapr N OBy
z €.0 + + z z &x
121 Ogp 1T ST O B PRSIR= I 14
n ¢ m og, n ¢ n og
oP if oP if
+ z z By, » + Z z g 5t
11 Fipgol Ve KE g Dq ey D My I
s oz 23 it ¥ Bt + S st 5t
121 Hipyog Ve KT 5 0 3, SO0
n n 2 n n 2
d°p’ o7P’ g..8
+ z z > % g ox + z % P if =jf
i=14=1 OMyp OXyp AL TRIE Ty g 5 D Oyp OXye
n 32 ) n 82 ’
P P
+ T g.. 8t, + I 8x
g o Oy Oty SIE TR, 7 B, 3k, Tir
n 52 ‘ 52 ’
P P
+ = g.. 0t + Z==08t_ =0
i=1 Btf ox £ if TPy 2 °°f



Rearranging terms,

n ' ' n ' n og. m 2.
OP OP oP if if
by << S + S~ + bN Sw 7 X + 5 — By
io=1 Xap T Gty ) e I\ 2 e IE Ty D Wy KE
n ngr m Bgif og >
+ 5 oo+ Z V. + Bt
<,| e TP T D T TkE T O ) E
(38)
n 62PI
+ by Bx + 2g ot
i=1 Sxif Stf ( if if f)
n n 2 1 2.1
o°p 3P
+ z Z g. 5., + g., &t + 5t, = O
i=13=1 Sxif ngf if ( Jf Jf f) atf'2 f

Comparing (37) and (38), it is seen that the condition for minimizing
8tf for the Bolza problem is the same as the linearized version of the

transversality condition for free tf for the Mayer problem.

Before continuing the discussion of conditions that must be satis-

fied to minimize (28), it is necessary to discuss the ideas presented
in the next section.

7. RESTRICTION OF STEP SIZE OF CONTROL VARIABLES

The function h as given by (31) is a second-order quadratic
approximation to H. If h 1s concave up a minimum will exist, but if
h 1is concave down difficulties will occur in determining step size
changes in the control variables since no minimum of h will exist.

The following discussion will result in a modification to alleviate the
difficulty.

Iet the following integrals represent constraints on the step size
changes in 6yk, k=1, .. ., m;
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iy

t
1 2 2
-/” 3 Syk dt = 8 k=1, .. ., m
t
o)

An equivalent definition of the above integrals are the foilowing forms:

. 1 2
Sx(n +k) "2 Syk s k=1, .. ., m

where

ax(n + k)(to> =0

BX(n + K)(tf) - ak2

The above 8xn + k values represent additional state equations and

the problem must be completely reformulated with the addition of the
m state variables. However, the Euler-lasgrange equations and the
transversality conditions previously developed are identical to those
for the modified problem. The function h now becomes

n n agi m Bgi >
h= I B8, z 8x, + X 8y
i=1 1(3:1"3 J T2 Wy K
m m
oH 1 2
+ 5 8y, + o+ = £ & 8Y, (39)
k=1a’; k 2,-1 m+k 7’k

Since h 1is a quadratic equation the requirement for h +to possess a
minimum for unbounded control variables is

2 2
oh _JH_ 4 >0 (40)
>x
If 5 is negative a an X must be chosen at least large enough
oy,
k

to cause (40) to be positive.
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From computational experience, it has been determined that the
above requirement, although correct, is not by itself adequate. That
is, not only should h possess a minimum but also some method of
controlling where the minimum should fall must be included. The fol-
lowing discussion will yield the needed results.

In applications to trajectory design, the Hamiltonian H plotted
against a control g will have the shape of a sine curve as shown in
the figure below. The value of Bmin would be the desired

Quadratic Approximations of H

value to minimize H. This value can be determined by calculating the

two values that satisfy the condition %% = 0, that is, emin' and emax'

A comparison will yield the smallest value of H. The value § Trepre-

sents the current value of the control function. The curve hl in the

above figure represents h if no constraints have been introduced to
ensure a minimum. The curve h2 is typical of the h function if con-
dition (40) is employed to ensure a minimum. The desired h character-
istic is a function such as h3 which has the same minimum as H. It

is possible to calculate a BXG which will insure coincidence of the
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minima. Knowing the value of H at @§ the value of H(emin) is

approximated by the following second-order Taylor series expansion:

¥ (mtn)

.3 2
H(e)+5%89+-21-:—3592
8

H(B) + %}g (emin - é) * % o (emin - 6)2

where the partial derivatives are evaluated at 8.

The above expression can be written as

d = d -
°H = 5% (emin - 6) * % a_eH (emin - 6)2
where
88 = 8y4p - B

The above expression is only a quadratic equation in &g. To insure

the expression has a minimum the coefficient of the 892 terms must
be positive. This is insured by the previous argument if the equation
is written as

d - 3 -
BH = Blel (emin - 9) * %(a_eg * 87\9) <emin - 9)2

2
where 8)\6 is chosen to insure (B_H + 6)‘9> > O.

892

If this quadratic is to have a minimum at emin’

_%H ¥ (PH -
° = e -sg*(aee * %) (%ntn - 8)
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and the required value of 8xe for the minimum of h to fall on the

same @ as the minimum of 1 1is

A similar result must be derived for each unbounded control function.

8. GEOMETRY AND EQUATIONS OF MOTION FOR
INSERTION INTO CIRCULAR ORBIT

To help clarify the ideas presented in this memorandum, the derived
equations are applied to a particular example. The equations of motion
are needed before the ideas in the next section can be discussed. Inser-
tion into a desired circular orbit to minimize fuel consumption with
variable thrust capability is typical of most Apollo trajectories and
only relatively minor changes are needed to solve other problems. Let
the x, y plene be defined in the plane of the orbit. The angle ©
defines the thrusting angle in a plane through the particle and parallel
to the x, y plane. The angle 6 is

z

Tunar surface

Thrust vector

Particle < Desired circular orbit

Coordinate System

measured from a line parallel to the x axis. The angle o is the
out-of-plane angle. The equations of motion are in the inertial system.
Since the problem of Mayer calls for first-order differential equations,
the equations of motion are of the following form:

g3

cos a cos 8§ - p,x/R5 (41)




31

g =V =§ cos o sin 6 - p.y/R3 (L2)
85 = w o= g sin o - |J,z/R3 (43)
g)-lv = }.{ = u (h‘l")
85 =¥ =v (45)
g6 =2 =w (14-6)
and
. -T
g'? =m = e (u’?)
where
T = thrust
m = mass of particle
u = gravitation constant
R2 = x2 + y2 + z2
and
¢ = velocity of exhaust gas
The Hamiltonian which is defined as
n
i i E 1 M &
is equal to 7
H = )‘u(% cos o cos § - u,X/RE)
A, (5 cos o sin 9 - p,y/R3> B (18)
N, (g sin o - |_,|,Z/R3>

AT )‘yv-'- Ao )‘m(-g) p,
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9. LEGENDRE-CLEBRGCH NRECESSARY CONDITTIONS FOR A MINTMUM

An additional condition that must be satisfied for a minimum with
one control variable 6 is the Legendre-Clebsch condition

h 0

2

60

From (h0), since

2 2

A
5h2=“g+mezo
Rels) 39

this condition is satisfied. For two control variables, 6 and a,
the Legendre - Clebsch condition is

2 2 2
dh i d°h 22 ahéauzo

| w

>0
B2 (L9)

2
52h 52h 62h -
5692 02 T\ ®eda) T )

From (40) and the condition that

>H 82h

38k B
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the conditions can be written as

2
O°H
a_eé + 5)\9 >0 (50)
FH
g;é +8), 20 (51)
2
2 2 2
O°H O°H O°H
— + B) — + 3 -<——a> =20 (52)

Since (40) assures satisfying (50) and (51), only condition (52) must
be checked. If (52) is not satisfied, 6xe and Bxa must be made large
enough to satisfy the condition.

10. SWITCHING FUNCTIONS FOR SECOND VARTATIONAL METHODS

If the thrust level can be varied between minimum and maximum levels,
it is desired to formulate switching functions corresponding to the dis-

cussion in section L, If the time tl is determined as an optimum

time to change the thrust level to minimize P', the following relation-
ship must hold:

—_— =0
dtl
This equation is equal to
) ) n ¢ dx,
ap_ _ P + 5 P i
Gty Oby g g 0%y A%y

! dx,
Before proceeding, it will be necessary to evaluate %g— and Efi'
i 1

PI
The following derivation will result in an evaluation of the = terms.
i

If the nominal trajectory is optimal, the following relationship
involving the variation Sxi and the multipliers Xi(tl) holds:



W ™MS

xi 5xi = constant (53)

i 1

This may be verified by first taking the derivative of the left hand
side and substituting the relations

- -OH
17 :x,
i
and
n Bgi m Og.
Ox. = z ox, + % oy,
510 9 D1 W K
That is,
1 n n n
Fr S, 5x1 = 7 Xi Bxi + z Xi 5%
i=1 7 i=1 i=1
n g n n Bgi m Bgl . >
= X - dx, + A z 5x, + T Ng
S 5; k
O R 5=1% 4 k=1%%
n n n og n m og.
OH i i
= I - 5x, + & LA 5x. + T A By
i 5; k
1o oy 1 i=13=1 + % {=1k-=1 K
Since
OH 2 )\agi
X, . % i Ox
J i=1 J
and

Q/
8’|m
1}
nmMs
'_l N

>
}_I
2




the above expression can be reduced to

n n
d ol
—= T A, Bx, = £ - <=—05x, +
at i=1 i i i =1 axi i 3
m
OH
= T dy.
k=1 D ok

Since the nominal was assumed to be optimal,

k
and
a_
dt
which proves (53).
In particular,
m
T A, (t)
i=1 7
Since
Axif
and
H

I =
>
o
X

ox, (t) =

1]

Bx.

nmMB
>
R

nm~Ms

5t

if

5x

if

[N =]

3y.
1 Wk
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the above expression can bhe written as

n n
soon (B)ex, (1) = 0 A, (D, . - g,
{27 1 i i=1 if ( if 1f)
n n
= % Me®e - B A 8ip Bt
i=1 i=1
n
= L MNpfx-H (tf> Bt
i=1
From section 3, for an optimum trajectory
H+ 9p'/dt, =0
and
'
= A
O/, if
so that
n n ’ ’
oP JP
= A () 8x, (t) = T Ax, , + <— Bt
127 1 i i =1 Sxif if Btf T

The right-hand side of this equation is an expression for the change in
! - . .
P which implies that

14
at any time t. Therefore the expression for a8 is reduced to

dtl

. M (%) dxégzl (54)

7
dp
dat

N MBS

where

i o)
tl




dx.(t

The term ;t L can be approximated from the equations of motion.
1

From equation (hl), if the switching time tl is changed by a small

incremental value Btl, the change in u 1is approximated by

du = T cos a cos O - BX ot
m R3 1

(I ux
= (m cos B cos a - R5> Stl

37

However, the change in u at t, + 3t with the thrust level charged

1 1

at tl would be

T +
du == cos 0 cos aq - S ot
m R3 1

T+
— cos 6 cos a -~ 323 ot
m R3 1

The effective change in u would be

+ -
du = (2——:—EL cos 6 cos a) 5t
m 1
or

gz =( il ; T‘) cos B cos a

1

An equivalent result for the other state variables are the following
partials:

av_ _ (T+
at]

aw < T T')
= sin a
m

-T‘) .
sin B8 cos a
n

dtl

dm_ _<__T+ = T')
dtl c

1
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i
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Fauation (54) now takes the following form:

g—%i = )\u [(—li?;—;r:-)—:\cos 0 cos a
+ )\v [V(—-i—;-rl:-)-}sin 8 cos a

1

m
+ -
+ A g—T—'—'—T—ﬂsin a
w m
+ -
TSN T}
c .
A linearized version of the equation takes the following form
2.1 m 2.4
ap’ TP 7P
— + T AN, + % Oy, =0
a0 o N A 3y, Tk

Taking the appropriate derivatives, the above function takes the following
forms

. 1 .
A cos B cosa+ A sm@cosa-—-()\ cos B cos a+ A sin 6 cos a
u v mi u v

m\
+ A sina)Am+)\ sina,-—-—rll+cosecosor,A)\ + sin o M
W w c u u
AN (55)
+sinecosaA>\-——m-<)\ cos B sin a4+ A sin a sin ©
v (] u v

- A cosou)Aa-<)\ sin 6 cos @ - A cos a cos 6)A6=O
W u v
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From section i, the condition for changing the thrust level fis e 0,
For the geometry assumed in this memorandum this funection is as follows:
R )\u A, N M
il cOos a cos O + o cos a sin 6 + o sin a - Y
A linearized version of this expression is as follows:
A, cosacos B+ A _cosasin 8+ A sina
u v W
mkm
- — + cos a cos § AN+ cos a sin 6 A\
c u v
mANn
+ sin a A\ - + <- A_cos o sin 6 + A COs a cos 9) A8 (56)
W c u v

+

(- A sina cos 8§ - A_sina sin 6 + A cos a) a'e?
u v W

- 1 (X cos a cos 8+ A cos o sin 6 + A sin a) Am =0
m u v W

Comparing (55) and (56), it is seen that the switching functions are
linearized versions of the switching functions for the Mayer problem.

11. EULER EQUATIONS FOR CONTROL VARTIABLES

For an optimum trajectory, the following expressions are satisfied:

Sh
gy— = O’ k = 1’ . y
‘ I
From (39)
d
dh n €&  OH
= T B\ +
565’k 1 =1 1 Sy_k Yk
n 2 m 2
AT S WBH 8y, (57)
i=1 ik s =1 ks
+ BN,y B¥s k =1, , m
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For the Mayer problem, the Euler equation for the control variables
arc as follows:

Jali
éyk - O, k - 1’ I3 m
or
A
A a &4
—= %\ s k =1, , m
W goq 1O
Linearizing this expression
2 m 2
OH n dO°H o°H
+ z S o bx, + z dy
g o x4 s o1 M s
(58)
n 2
O°H
+ z dr., =0
121 Mt
Since
n 2 n o 98
{1 =1 VM i =1 %
equation (57) and (58) differ only by the 8\, 4 3 term. Therefore,

the Euler equation for the control variables for the Bolza problem are

linearized versions of the Euler equation for the control variables

with the addition of the B8\ terms.
: n+ k

12. RESULTING EQUATIONS FOR SECOND VARIATION AS APPLIED
TO ORBIT INSERTION PROBLEMS

For the geometry and problem defined in section 8, the following
five end conditions are required for insertion into circular orbit:

0

i
o
+
4
I
©
)
1l

¥y =Yg £

u, X, + v

pXp v Ve Ve =0

Vs




W

-
N
]
=
i}
(@]

2 2 =
Xo +yf>-R—O

=y
=
1]
TN

-
\Jl
|
N
L]
1}
(@}

where R 1is the radius of the desired circular orbit, \/u/ﬁ is the
desired circular velocity.

The condition ¢2 is the vector dot product and requires the final

velocity vector and position vector to be perpendicular.

For this problem it is desired to maximize the final weight. Since
the formulation has been for a minimum problem, the problem is changed
to minimize the negative of the final weight. For computational purposes
it was found better to minimize the following expression:

m

£

m
¢]

P =a

where

mo is the initial mass

and

mf is the final mass.

From the definition of the penalty function in section 5 and the
above defined end conditions,



The thrusting scheme is assumed to be as follows:

T
4
T 1 r [
1 | ! |
| I |
T _— |
e | | |
! ! !
] = t
t
o 5 s te

Thrust Versus Time

where
T1 = maximum thrgst
T2 = minimum thrust
The problem is to determine values of aft), o(t), t,, and t, to

minimize P’ subject to the equations of motion.

The equations for the above Mayer problem are first developed since
they are needed both to develop and solve the second variational equa-
tions. The Euler equations for the above problem are given by equa-
tion (13) and are of the form

‘ OH .
Xi = -5 i=1, ..., n
i
and H is given by equation (L48).

Taking the indicated partials, the following Euler equations are
obtained:

My = mhy (59)
Ay =N (60)
A = =) (61)
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-u [. o 2

xx=;% Ny (5x -R)+3)\vxy+3)\w xz:l (62)

- —

o b 2 2

)‘y'RS _BKuxy+>\v(3y -R)+5Kwyt (63)

-u | 2 _2}]
Xz = ;% BXu xz + 5Xv yz + kw (32 - R ) (A4)

and

Xm = i% (Xu cos a cos O + Xv cos o sin © + Xw sin a) (65)

From equation (12), the transversality condition for free Xg is of
the following form: by

Taking the indicated partials, the following transversality conditions
are obtgined:

1/2 -1/2
= - [ B 2 2
N () =l e [ (B) (o # ) | (B %t e )

(66)
" 1/2
M (tf) =k vyt 7 (uf2 + vf2> HRCR S <uf‘ Xp * Vp yf)
(67)

A, (tf) =k, W (68)
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Ay (tf> =k, us (uf xp + fove yf> + k) xp |1 R (Xf2 + yf?>

(69)
= ( 2 o\-1/2
Xy (tf) = k2 Ve (uf Xp + Vo yf> + khyf 1 -R (xf * ¥ >

(70)

xz (tf) = k5 Zp (71)
and
1

A (tf) = - n (72)

The Euler equations for the control variables are given by equation (1k)
and have the following form:

OH T
= = (- i 0
56 - o ( xu cos o sin © + xv cos a cos ) (73)
and
oH I -\ sina cos 8 - A sina sin @ + A_ cos a (74)
X m ( u v w )

The transvers§lity condition for free final time is given by equation (11),

but since %%— = 0, the condition reduces to
f

H =0 (75)

To apply the second variational results, P’ should be expanded into
the form (28). However, from the previous results, all of the second
variational equations are linearized versions of the equations devel-
oped for the Mayer problem. The differential equations for the state
variables are obtained by linearizing the differential equations (41)
through (47), and the general form is given by equation (15). Perform-
ing the indicated operations, the following differential equations are
obtained:
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du = % (3)(2 - Re) 5x + 3xy Oy + 3xz ?)sz
R

-r%(sinoc cos © 5o + cos a sin @ 58)

- —% cos a cos O dm (76)
m

B3V =—u—5- ny dx + (5y2 - R2> 3y + 3y zé%
R

-%(sina sin 6 8a + cos a cos O 58)

- -% cos a sin © &m (77)
m

W =—% Ez x5x + 3zy Jy + (322 - R2) Sz:]

R
+ I cos a da - Z sin odm (78)
m m2
5% = du (79)
Sy = dv (80)
8% = dw (81)

and

S = O (82)
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The term ©m must be treated separately since om = 0 and ©m

varies only if 8t1 or 8t2 varies. The expression for om 1is given

by the following:

]
e}
™~
C—'—
no
~—
/—\
=
n
Q 1
3
-
~—
o
<+
N

~

where 1 is the Heaviside function and is defined as

H(ty) = 1 i=1,2 (83)

From the previous discussion, the second variational Euler equations
are linearized versions of the Euler equations for the Mayer problems,
and the general expression is given by (34). Taking linearized ver-
sions of equations (59) through (65), the following second variational
Euler equations are obtained:

BA, = -8\, (84)

SXV = -my (85)

s'xw = -0}, (86)
), = §$ {&ux(5R2 C 52 (7 - 52) - 1 2(8 - 5X2§1 >

+

—
[guy(RQ - 5x2) + KVX(R2 - 5y2) + sz(—5xy) By

—

+ [EuZ(Rg - 5x2> + va(-5xz) + KWX(RQ - 522)-1 8z

- Ri% l:(3x2 - RE)ES)\u + y(ax)mv + z(3x)5xw:l (87)
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SA

y

3\
z

BA

m

:R%H' Euy(Re - 5x2) + )\vx(R2 - 5y2) + )\wz(-Sxy):] [59'4

+Eux(2-5y)+w(3R -53’)*”(2’53’] >

]}
]

2
- ; E((By)s)\u + (5y - R )Blv + z(}y)&kw

[: A x(-5yz) + A z( - S5y ) + A y -

-5—$ [Euz(R2 - 5x2) + )\vy(— 5xz) + )\WX(RE - 5zgﬂ &x

R

+ [EuX(-5yZ) + XVZ(RQ - 5y2) + kwy(Re - SZEEJ By

+ [gux(RE - 528) + 2 y(82 - 522) + A z(3R° - 5222] 82

e 2 2
-5 x(3z)8n + y(32)8) + (3z - R )axw:]

l(&)\ cos a cos O + B\ cos a sin 8 + B sinor,>
2 u v W

g

+—‘1—1-(->\ sin a cos ® = A sin o sin 9 + X\ cosor,)f)a
2 u v W

T
—_— in ©
+ m2 ( )‘u cos o sin © + )\v cos a cos 9)89
2T . .
----()\ cos o cos 8+ A cos a sin © + 2\ 31na)6m
m3 u v W

(88)

(89)

(90)
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As previously discussed, the transversality conditions for the
sccond variational problem for free 8xj are linearized versions of the

transversality conditions for free Xy for the Mayer problem. The gen-

eral form of the transversality conditions is given by (36). TLinearizing
cquations (66) through (72), the following transversality conditions arc
obtained:

7
u
_ " £ o
Mate) = M 1'J§(u2+v2> Lo 2| "R e )™M
£ £ £ £
k v
1 £ '°f o
. k
2,2 J§u2+v2 o Xp Vp|Oe
£ £ £ £

£
(91)
k. v, u
1 Ve Ur m
B\ -
v(ts) 2, .2 ¢§u2+u2\+k2xfyflluf
£ £ £ £
.2
o f
) kl " V/i-ng + v 2 - u 2, v 2" k2 Ve Avf
R\'r f £ £
+ - 5t
ky Vg Up Sx. + K, <uf X + 2V yf) Ayp = A, Ot (92)
A (t.) = -
A (f> ke O xwf Bt (93)




k9

mx(tf) = k2 (Quf Xp * Vo yf)Auf + k2 Up Vo AV,

2
o X
f
+ku2+ku1-——-—3——— 1-—5—73 Iox,
2 f 2+ 2 X +yf
Xf y5
+1k, u, v, + k) x,.y R Ny A Bt
e St S T e 32| TE T Txp TE
(Xf +yf)
(94)
= + AN
BA (‘tf) kzvffouf+kg(ufxf 2vfyf) Vo
R
Ax
¥ Ve Vet Ky Xp Ve > 32 |t
(xf+yf>
_ x 2
£
+{(k v2+k 1 - R 1 - 5 > Ayf
2 'f 4
2+ 2 xf+y{_
Xf yf b
-\ Bt (95)
ye f
= ~A 5 6)
axz(tf) kg Az - ). Bt (9

and

M b, =0 (97)
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Irom the previous discussion, the condition for the parameter htf
tor the Bolza problem is equal to the linearized condition for free tf

for the Mayer problem. The general form is given by ecquation (37) and
linearizing (75), the following result is obtained:

7 . 7 Rl M o -
nm + Z (_)\‘ ) AX. + z gjf A)\jf + E /_\(If + Sg A f = o (98>
3=1 Je/ dep 3=1

The switching functions for the second-variational method are given
by equation (56).

Trom the previous discussion, the Euler equations for the control
variables for the second variational method are linearized versions of
the Euler equations for the Mayer problem with the addition of the
an+k terms. The general expression is given by equation (57), and

linearizing equations (73) and (74), the following results are obtained:

2 2
d°H oH = O°H T
5] —— = - = (- i
3 <5)\e+ 592> m+m5a+m( cos a sin 95)\11
+ B\ cOs a cOS 9) + Z (x cos o sin ©
v m2 u
- Xv cos a Cos 9)6%} (99)
and
2 2
6@(8)\ +M\--%+BH689+2(-6)\ sin o cos ©
a 5&2/ m u

- 3\ sin a sin ® + 3\ cos on)
v W

2

T . . .
+ == (Xu sin o cos © + Xv gin a sin ©
m

Kw cos a) Sm (100)
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It is necessary, from the discussion in section 7, to determine the
expression for SXG and SKQ. The expression for b®hg 1s given in

section 7, and it is necessary only to determine the expression for

© . . Trom the expression
min

OH T
= - - ] =
5@;;; - ( A, cos a sin emin + X, cos a cos min) o,
-\ _cosasin ® . + X cosacos O, =0
u min v min
or
M
tan e'min - (101)
u
A -Xv
ince — and —— will satis e above expression, it is now neces-
s1 )\V 4 = will satisfy the ab ion, it i
u u

sary to determine which expression will minimize H. From (101), it is
seen that

)\
sin 8 = A4
A 2 + A 2
v u
and
)
cos © = Y
A 2 + A 2
v u
Xv Xu
If the values sin 0 = and cos © =
A2 42 A2 ?
v u v u

are substituted into equation (48) and the terms not involving © are
dropped since they are constants, the following result is obtained:




which is a positive quantity.

u
Tf the values sin 6 = and cos 8 = —————

arc used in the same expression, the following result is obtaincd:
2 2

\ \ A A
Sy T v N u

rfea® N e (HhFer®

v u v u v u v u

which is a negative quantity. Therefore, since it is desired to
minimize H, the correct value Ffor © is

-\
S tam-l -
min -A
u

(102)

A similar analysis must be performed for ®oin® From the expressions

\
oH  _ T (-X sina ., cos ® - A sina . sin 8+ A cosa . ) =0,
. m u min v 'min w min
min
-\ sinag ., cos O - A sina . éin 8+ A cosa . =20
u min v min W min
or
xw
tan Cmin © (k cos O + A sin 9> (103)
u v
-\ A

. W W . .
Since 'ZXV cos B+ % sin 6) and " eos B+ % sin O will satisfy
u v u v

the above expression, it is necessary to determine which expression will
minimize H. From equation (103) it is seen that



and

Tt the values

and

+A
. W
sin @ =
V/X 2 + (K cos O+ A sin 9)2
W u v
i(l cos 8 + A gin 9)
u v
cos a =
V/Xe + (X cos O + X sgin 9)2
W u v
A
. W
sina =
V/X 2, (K cos O + A sin 9)2
W u v
A _cos 8+ A sin ©
u v
cos a =
A 24 (X cos O + A sin 9)2
W u W

are substituted into the expression for H given in section 8 and +the

terms not involving o are dropped since they are constants, the fol-
lowing result i1s obtained:

A cos e(k cos O + A sgin 9) + A sin © (X cos © + A sin 9) + A
u u v v u v

2
W

\/1 2 4 (X cos © + A sin 9)2
W u v

2

cos™ @+ 24 A sin O cos © + A 2 sin2 B+ A
v u v W

2

\/iwg + (Xu cos © + A, sin 9)2

2
W

V/X 2, (K cos O + A sin 0)2
W u v

( Xu cos 6 + Xv sin 9)2 + A

which is a positive quantity.



5

-A
W
Tf the values sin a = and

M/;g + A cos 94+ A sin 8 e
W u v

(X cos 9 + A sin 9)
cos a = - 2 A are used in the same expression,

V/k 2, (X cos O + A sin 9)2
W u v

the following result is obtained:

2
coOs 9 cos e + sin e - Sjn e A cos 9 + sir 9 ~
>\U. (ku >\V ) )\V ( u )\V ) )\'W

A 2, (h cos O + A sgin 9>2
\/ "w u v

which is a negative quantity.

As a result of this analysis and using emin as the correct value

of 6, the following result is obtained for the desired «

-A
a = tan_l 5 kil —5
min -(Ku cos nin + Xv sin min>

(10L)

1%, METHOD OF SOLUTION FOR PENALTY FUNCTION PROCESS

The previously defined results have yielded sifficient conditions
to solve the penalty function process. The following discussion is a
step-by-step description of the method of solution. This memorandum is
not intended to describe the actual program and a succeeding memorandum
will discuss the program in detail. The sequence of calculations is
for the problem discussed in section 12. Solution techniques for
other problems require only relatively minor changes.

17 and t2.
Step 2. Integrate numerically systems (41) through (47), employing
the first estimate of «(t), 6(t), t, and t, from Step I.
Step 3. Terminate the trajectory at a time tf such that P’
attains a minimum. The conditions for this termination are discussed in

Step 1. Store the first estimate for 6(t), a(t), t



\
A

section 6. Since the problem was defined for fixed-state variables at
initial time, the initial values of the state variables are the constants
of integration. This trajectory is the reference trajectory and varia-
tions in the control variables and switching times will be determined

. . - 1 . .
which will minimize P on the succeeding trajectory.

Step 4. The numerical calculations are now at tf and Lagrange

multipliers at t_. can be calculated from the relations (66) through

f
(72). Using these values as constants of integration, the adjoint system
given by equations (59) through (65) can be integrated backward in time
to time to to obtain initial wvalues of the Lagrange multipliers.

Step 5. It is necessary to determine a transition matrix to cal-
culate changes in final values of the Lagrange multipliers as a result
of changes in initial values of the adjoint variables and changes in

t, and t,. The following expressions are used to form the transition
matrix:
+ —a}gt%f)s%Jr{i, i=1,...,7 (105)
o) = 5, T () R
+ s :f) Bt, + %, 121, ...,7 (106)

The hat terms in the previous expressions are a result of the nonhomo-
geneous terms %5 and %%, appearing in the equation for &a and

58 as given by equations (99) and (100). If these nonhomogeneous terms
are nonzero, SKi(tf ,i=1 ..., 7 and 8Xi<tf)’ i=1, ..., 7

may be nonzero even if all of the values Ski(t& ,i=1, . . ., 7 and
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ﬁtj and 8t2 values are zero. The above system can be written in the

matrix form shown on the following page. It is neccssary to evaluate the
14 X 9 matrix of partial derivatives and the 14 X 1 matrix of hat terms.
A total of 10 separate calculations are necessary for this operation and
arc listed below. The valucs of ﬁke and 3%@ arc calculated at every

integration point using the method discussed in section 9.

Step a. Set ©t,, 5t,, and 6ki<tf>, i=1, ..., 7 values to

zero. Integrate equation (41) through (47), equations (59) through (65),
equations (76) through (82), and equations (84) through (90) to time tf

using Ba. and 98 given by the equations given on page 50. Since all
variations are set to zero for this operation, the values obtained for
Ski(t) and Sxi(t), i=1, ..., 7, are the effects of the nonhomo-

. 6 3 =
geneous terms in da and 5O, and the SXi(tf) and BXi(tf>, i=1,
., 7 wvalues are the terms of the 14 X 1 hat matrix.
. OH OH .
For steps b through j the terms < and Se in the %z and 89
equations are set to zero since step a determines the effect of these
terms,

Step b. Set 8t; =0, B8t, =0, axu(to>= 1, and &\, =0,

i=2,..., 1

Integrating the same equations listed in step a forward to tf, the
Sxi<tf) and SXi(tf>, i=1, ..., 7 values obtained represent changes

in the state variables and in the Lagrange multipliers at final time due
to a unit change in the initial value of the XW multiplier. These

values represent column 1 in the 14 X 9 transition matrix.

Step ¢. Same operation as step b except set 5kv<to) =1,
6xi(to) =0,1=1,3, ..., 7T to calculate the second column in the

14 X 9 transition matrix.

Step d. Same operation as step b except set Skw(to) =1 %o cal-
culate third columm in 1% X 9 transition matrix.
Step e. ©Same operation as step b except set Skx(to> =1 to cal-

culate fourth column in 1k X 9 transition matrix.
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Step £, Same operation as step b except sot ﬂxy(to> =1 to cal-
culate f£ifth column in 14 X 9 transition matrix.

Step g. Same operation as step b except set ﬂkz(to) =1 to cal-
culate sixth column in 14 X 9 transition matrix.

Step h. Same operation as step b except set ﬂkm<to) =1 to cal-
culaie seventh column in the 14 X 9 transition matrix.

Step 1. Set 8A; (to>= 0, i=1, ..., 7 8, =0, and t; = 1.
Tntegrate the equations listed in step a forward to time t.. At this

1
point the state variables should be jumped by the expressions calculated
in section 10. That is,

+ -
Su = CE—4::£— cos O cos a> 5t
m 1

+ -
5 = CE——:JE— sin © cos a) 5t
m 1

v
4 -
dw = (E—'——T-— sin a,> 5t
m 1
5x = 0
dy = O
8z =0
and
+ -
-\T - T
om = S Stl
where
8tl =1

Integrating the system from tl to tf yields the desired result

for column 8 in the 14 X 9 transition matrix.

Step 6. The condition for the parameter Btf given by equation (98),

equation (56) evaluated at tl and +t,., the set of equations given by

2’




(105), the set of equations given by (91) through (97), and the set of
equations given by (106), yield a set of 24 equations and 24 unknowns.

The 24 unknowns are as follows:

axi(to), i=1,
axi(tf), i=1,.
Sxi(tf), i=1,.
bty
5t

and
Bt

The coefficients of the unknows except equation (56) are evaluated

at final time,

The coefficients of equations (56) for 8t1 are evaluated at tl
in step 5(i) above. The terms Soc(tl), 89(t1>, and ax(tl), i=1,

are evaluated from the following expressions:

Y

8a(t1) = 121 Wami (to) + &(tl)

se(tl) = 1%1 2%)axl(to> + g(tl)

and

The coefficients of equation (56) for 5t

at t, in step 5 above. The terms Ba(te), 69(1:2), and 5’\1(132)»

i=1,..., 7 areevaluated from the following expression:

o oy Ty

determination are evaluated



')

1—3&,(1:2) = z Y—('xi(to)m\ (t()) N ’( 1 + a(tg)
7 8 t2) ALz ta) .
ae(tg) = ,;El gxf—(t—(;ysxi(t > + —§§;— + 9(1:2)

Mi(tg)= h m mj(to> + "Ft;— Bty + Ai(tg), i=1...,7

The set of 24 equations can be solved simultaneously to determine the
2l unknowns.

Step 7. With the &t., dt., and axi(to), i=1, ..., 7, values

1’ 2
determined in step 6, integrate equations listed in step 5(a) forward in
time to calculate da(t) and 56(t) given by the equations for Ba and

58 given by equations (99) and (100). At tl the variational state

equations must be jumped by the following relationships:

+
duf(t ) = CE__:JE_ cos O cos a 5t
( 1 m tl 1

sin © cos a>t 6t1
1
+- -
T -7 .
Sw(tl) = (———Ef—— sin a)tl Stl

where Stl is determined in step 6. A similar jump is made at t2

in the state variables where

+ -
suft.) = GE_:_EL cos O cos a 3t
( 2) m t2 2
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+ -

T -7
5 = | —————— gin © B
v(te) < - sin 9 cos a) it

% 2

and

where 8t, 1is determined from step 6.

Step 8. The values of Stl and 5t2 calculated in step 6 and the

values of Ba(t) and 56(t) calculated in step 7 are added to the
values of t,, t,, a(t), and ©(t) which were stored in step 1. The

entire process from step 2 through step 8, using the new switching
times and control variables, is now repeated. The new value of P
calculated in step 3 should be smaller than the previous value. This
entire process is repeated until improvement in the function P be-
comes small or until the program converges to & minimum of p’

1k, REFINEMENT PROCESS

Since the penalty function process approximation discussed in the
preceding section will converge to a solution whose terminal values differ
from those prescribed, a refinement process is necessary to allow com-
plete convergence. As in reference 2, it is assumed that the required
end conditions are of the following form:

V. =x, =X, =0, i=1, ..., a, (107)

where

X. = desired value of x,
i is
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This particular typc of end condition greatly simplifies the resulting
equations and will demonstrate the required result. The function to he
minimized is of the form (3), subject to the end conditions (2). Ex-
cept for the transversality conditions all conditions arc the same as
the original problem. Tt is necessary to discuss the form of the new
transversality condltions.

An expension of the function P similar to that given by (28) for
r
the function P - is as follows:

P = P(x X t.\ + % oP Ax
- ’ . 3 D, , - -
(a+1f ne f) i=a+1 Sxif T
2 n n 2
+§36P—5tf+%-a—%atf2+% » s BPX Ax, O,
dt j=atl jma+l i) £ Jr
f f f
n >°p
+ T STt A%y Bt (108)
i=a+l 1f f il

The fixed-state variasble terminal conditions are

x, +M&x, =%, =0, i=1, ..., a, (109)

te v r
where

;i = reference trajectory values
f
Axi = gecond order approximations to terminal value’increments
f given by (27).

The constraints (107) may be adjoined to (108)by means of constant
multipliers w , 1 =1, . . ., a. Approximating the by to zero and

i

first order terms where Ei is the value for the reference trajectory,

and applying the multiplier rule, the following second order approxima-
tion to P is obtained:
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The transversality condition for the state variable &Xi is of the
f
following form:

B(JO I+ {g)
Bhy o= ox,

Jf J

Taking the indicated partials of (110) the following expresions are Ob-
tained:

n Dgi a agi
_ P £ £
e Tl & et S M T
i=a+l ip 1e i= Jg
+ 6uj, j=1, .. ., 8 (111)
and
2 agir 2 fip
z ~ S Stf + -Z v = Btf
i=a+l is £ i= Jp
D ¥Pp
+ I Py dx, + gy 6tf
i=a+l ip jf f f
2
N o Pt -3\, =0, j=a+1l, .. .,n
Jp f Je
(112)

For the parameter 6tf, the required condition is

d
GO ;til - J2>= 0 (113)




or

n 3P _ n gl m agi
z g. + Z 8x, + T By,
o d EE
{=a+l 4 £ =1 % r k=1 Pk Xr
£ f £
n Bgl n agif agl
+1 X S8 + Z ¥+ S5 3t
j=1 %3 dr k=1 Sskf ke £ f
n n 2
+%%—+ X by oP x, + g Bt g.
£oimetl Jmarl 1,7 r r Ie
n 2 2
J°P J°P
+ = &x, + 2g. Bt )+ 5t
smab1 %5 O ( g g ) 2 T
f £
a n Bgif
+ Z W, lg. + Z S 8x,
5 B B I R O PR ¢
8 Bgi £ n agi £ n Bgi £ Bgi £
+ Z 3y, +| T g, + I ¥+ 5t
k=1 55kf ke \ya1 Sszjf Jp k=1 Sakf kp Oty £
8
+ L dw.g, =0 (114)
1=1  * lp
For the Buj value, the required condition is
ofF +J, +J
1 2
( = ) = 0, J =1, s 8



or

8x,+é38t +>‘<j_§ =0, j=1, .. .,m (115)

The problem is normally treated with the augmented function

~

P*=P+ui(xi-xi) i=1,.. ., 8

The transversality conditions for X, are

f
BP*
> =ty T h » B
i £
f
or
by = A, i=1,...,a (116)
and
5'?{1:)‘1’ i=a+1,...,n (127)
if -

Calculating a linearized version of equation (116), the following re-
sult is obtained:

=p, A

A A
g T ANy m Ry Oy

or

A+ B\, + ABt. =, +5
J J Jof W W

J J

Since Kj =-%§— and by = kj, the above equation is written as
J

dH
axj --&Gt‘mf-— zmj =0 (118)
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Rewriting equation (111), using equation (116) and (117),

n Bgif a agif
SA = z A, 8t .+ = A ot
I =+l r &jf L EEJf £
+ 6uj, Jg =1, s 8
or
n agi
BN, = T A 5t + B, j=1, , &
Jp qm Lp Oy F J
f
Since
og.,
. i
. i, x,  ox
i=1 f 3 J

the above equation can be written as

oH :
Bhy =5 Otp + By, j=1 ..., a (119)
r J

Comparing this linearized transversality condition of the original
problem with equation (118) it is seen that they are equal.

Calculating a linearized version of equation (117), the following
result is obtained:

- n o 2
&BP__!_ T P <6X + gq 6tf>+§xi%6tf
Je g=a+l if gp by f Jg T
- KJ - B\, + %%- Stf =0 J=a+1, s 1
f J
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N
Since 3;2— = A and using the relations (116), it is seen that
X, 'jf

y
Jf
equations (112) and (120) are equal.

The transversality condition for free final time is
oP
+ 1, =0
5tf f

Calculating a linearized version of this equation, the following result
is obtained:

n 2
%P—+Hf+ T taP sx, + &, ot,
£ q=atl £, ¢ f

2
atf 3=
n n Bgi
+ Z A z - 5k + g Bt
i=1 *tlg=1 Xf( R f)

n %8 . agi
+ T %y <6ykf * ykfatf) T, Btpl = 0
k=1 £

Substituting into this equation the expressions for 3 Kj, =1,

., n, from equations (111) and (112), the following result 1s ob-
tained:




69

op n ¥op
+H,+ T < 5% + g_ Bt )
SE; £ et Stf5§qf ( o Bap ot
og
2 n n i
P oP f
-y e '§1 i=§;1 ey O, i
f J= £
a agif M
+ T W v Btf + B, = Stf gj
i=]1 jf J
+ p 8t + T B 5t
imabl |1merl g 0%y F g 1y OUf
£ Ir £
n 2 2
O°P o°P
+ Z ®x, + g, dt,.) + ot
1ot g K ( £ ip f) 3, Stp U f
£ Ir £
dH 2 no og;
- st .lg. + = A Lo (ax + g Bt )
T I R N o, \ 4 % T
m g, g

P (éy + Bt ) ot B, | =0
k=1 55kf ke Vkp £ 3, T

(121)
Comparing equations (11k4) and (121), it is seen that the transversality
condition for free Stf is a linearized version of the transversality

condition for free tf for the original problem.
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Comparing equations (115) and (107), it is seen that the condition
for Sy 1is equal to & linearized version of the end constraints Wj.

1%, REFINFMENT TRANSVERCALITY CONDITIONS 1OR
INSFRTTON INTO CTRCULAR ORBIT

I'rom the discussion in the previous section, the transversality
acnditions are linearized versions of the transversality condition for
the original problems. For the problem defined in section 8, P¥ is

given as follows:
m
% ___*~ 2 2 B
Plerm vty Kuf +"f>" -]
o] R
+ pe(ufxf + vfyf) + bW

2
oy li(xfg * yf2> } R]+ H5Ze

#*
The transversality conditions for xi are given by ‘gg__ = xi .
f if f
Taking the indicated partials, the following partials are obtained:
N () = - (122)
m( f) m,
A =
u(te) = 2qup + WX, (123)
A =
v(tf) U Ve F BV (124)
A =
w (Be) = bz (125)
A =
c(ts) = Bop + 203 (126)




Tl

>
<
ct
H
S~
|

=Love + 2V, (127)
and

W

[

(128)

"2 (°r)

Equations (123), (124), (126), and (127) represent four equations
with the three constgnt multipliers Ml, os and Ky, - These constant

5

multipliers can be eliminated to obtain the following single transver-
sality condition:

u)\ _v)\ +x>\ -yf)\.

f v f u f Ve =0

I

A linearized version of this equation is as follows:

A j A :
+ uf<6 . xvf 6tf> + A (Suf + Stf)

- Vf<8)‘u + )‘u atf> - )\uf (5vf + Btf)

A ) ) ;
+ xf<6 v, + 7, Stf> + v, (axf * X Btf)

) Ao+ A - A - -
yf<6x + x, Stf> . <8yf+yf atf) 0

f f
(129)
A linearized version of equation (122) is given by
] 1
A A = -
)\m(tf) +BA+ A Bt m (130)

o}



Tinearized versions of the constraint equations are as follows:

/

° 2 3 o . o P,
- — v A4 + v =0
(nf * Ve ) R * 2uf (ﬁuf * Ue F)tf> *e by (O f bl 0tf>

Up X + Ve Vet Ue (ﬁxf + kf Btf) + X (Suf + ﬁf Btf)

b Ve (BYp + Vg Btg) + g (BVp + Ve Ptg) = O

(132)
x.2 + 372 ﬁ2+2x 5%, + % Bt} + 2 8y. + v. 8t .Y =0
g T ¥p )" £ ( £ T X f) I ( Yp 7 Vg f)
(133)
zo + (5zf + zf 8tf) =0 (134)
and
g+ (Bwf g atf) =0 (135)

A linearized version of the transversality condition

oP
Hf+§€—-—o
f
for free tf is given by
7 7 OH
H oH OH f
Ho+ Z x, + Lo + M+ T A, =0
S SXJf jp = ) a1 ijf Jp




Since
Al ; \ o8, _ A
ij - 4o 1 x, g
f
and
5Hf )
X, T 78y
Jp

the above equatiin reduces to

[ oH SH 7
Hf- z A, dx . +<E>fmf+(m>fAef+ Z g. SN, =0

j=1 J9r Jr j=1 9f¢ If
(136)

where

OH ; \ %8,

X ! X
and

wH_ L, %

=5 1

16. METHOD OF SOLUTION FOR REFINEMENT SCHEME

A step-by-step method of solution for the penalty function process
is given in section 13. For the first cycle in the refinement method
the o(t), O(t), ty, t,, and ki(to), i=1,..., 7 values from the
last cycle of the penalty process are used. The method of solution for
the refinement method is as follows:

Step. 1. Calculate the transition matrix using the same method as
described in step 5 of the penalty scheme.




"{l[.

Step 2. FEquations (129) through (136), equation (56) evaluated at

t, and t,, and the set of equations given by (105) and (106) reprecsent

a set of 2L equations and 24 unknowns. The 24 unknowns and the method
of solution are the same as given in step 6 of the penalty scheme,

Step 3. This step 1s the same as step 7 in section 13.

nx Y
Step L. The values of &t,, Bt,, & i(tf), i

lated in step 2, and the values of ®a(t) and 56(t) calculated in
step 3, arc added to the values of t,, t,, a(t), 6(t), xi(to)’ i=1,

., 7 for reference trajectory.

=1, ..., 7 calcu~

The process is repeated in steps 1 through 4 until all of the fol-
lowing conditions are satisfied within reasonable tolerances:

&), -

(%%>t2 =0

%g(t) =0

%%(t) = 0

8(t) = 8,;,(8)

a(t) =a . ()

H@f>—o

A Gﬁ"ﬁi
uf)\vf-vf)\uf+xf>\yf-yf xf=o




and
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